Secondary 1 Term 3

Text & Reference Manual

This booklet is to help bridge the gap between parents, students and teacher. We will go through some of it in-class, but it is the student's responsibility to complete.

Name:

Teacher:_____

Class Period: _____

Key Policies for Secondary Math 1:

- Students must pass every Unit Test with an 80% or better in order to receive a passing grade. Otherwise, grade will be an "F" or an "I" as determined by the teacher.
- Student may retake any Unit Test as many times as necessary to show understanding of the essential standards in the core.
- Student should complete these study guides as part of the class requirement.
- Homework turned in after the due date will receive a penalty to credit unless excused by the teacher.
- Term finals may NOT be retaken for a higher score and must be completed in one sitting.
- Each term includes a final date when homework will no longer be accepted for credit.

Study Guide Gru	
Unit 7	
Parallel Lines & Angles	
Due January 11/12	
Unit 8 Study Guide	
Function Operations	
Due February 1/2	
Unit 9 Study Guide	
Sequences	
Due February 22/23	

Study Guide Grades

Please review the following policies for Secondary One:

- Students must pass every Unit Test with an 80% or better in order to receive a passing grade.
- > Practice tests for each unit are **available online** to help prepare for the tests.
- Students may retake any unit test as many times as necessary to show understanding of the essential standards in the core.
- > Any failing grade can be made up to a passing grade until the last week of term 4.
- Students may take missing tests after the end of any term as needed, but we encourage students to make up tests as soon as possible after the initial administration.
- A failing grade must be made within one term to earn a grade higher than a D-. Any grade made up after one term must be by contract with the teacher or student will have an F on their permanent record and will have to make up the credit online.
- > Traditional textbooks are available upon request.
- Term finals may not be retaken for a higher score and must be completed in one sitting unless there are extenuating circumstances are presented before the test is administered.
- Homework turned in after the due date will receive a penalty to credit unless excused by the teacher because of absence or other extenuating circumstances.
- > Each term includes a final date when homework will no longer be accepted for credit.
- If students damage a class-provided calculator (TI-84) a fee of \$90 will be added to school fees and the student will no longer will have access to a school calculator.
- If students damage a class-provided iPad, a fee of \$450 will be added to school fees and the student will no longer will have access to another calculator.
- Students should complete the study guides included in this packet as part of the homework requirement: These study guides provide information on each concept tested for the unit.

SECONDARY MATH 1 SCOPE AND SEQUENCE 2017-2018 (TERM THREE) **SUBJECT TO CHANGE**

<u>TERM 3:</u> Jan 3 – Mar 9

UNIT 7—Parallel Lines with Angles					
Assn	Learning Objective	A Day	B Day Done	Core Std	
7A	Angle Relations	Dec 15	Dec 18	G.CO.1, & 12	
		Dec 19	Dec 20 $(\frac{1}{2} day)$		
7B	All About Lines	Jan 3	Jan 4	G.CO.2, G.GPE.5	
7C	Constructing Angles	Jan 5	Jan 8	G.CO.12	
7D	Parallel Lines	Jan 9	Jan 10	G.CO.12	
7R	Unit 7 Review	Jan 11	Jan 12		
***NO SCHOOL Jan 15 th					
	Unit 7 Parallel Lines Test	Jan 16	Jan 17		

Unit 8—Function Operations							
Assn	Learning Objective	A Day	B Day		Core Std		
8A	Adding Functions	Jan 18	Jan 19		F.IF.1, 2, & 7		
8B	More Adding	Jan 22	Jan 23		F.IF.1, 2, 4, 5, 7, & 9		
8C	Multiplying Functions	Jan 24	Jan 25		F.IF.1, 2, 4, 5, 7, & 8		
8D	Shifting	Jan 26	Jan 29		F.IF.2, F.IF.4, F.IF.5, F.IF.6		
8R	Unit 8 Review	Jan 30	Jan 31				
	Unit 8 Function Operations Test	Feb 1	Feb 2				

UNIT 9—Sequences						
Assn	Learning Objective	A Day	B Day	Core Std		
9A	Arithmetic Sequences	Feb 5	Feb 6	F.IF.3, F.BF.1 & 2, F.LE.2,		
9B	Geometric Sequences	Feb 7	Feb 8	F.IF.3, F.IF.6, F.BF.2, F.LE.3		
9C	Arithmetic/Geometric and Linear/Exponential	Feb 9	Feb 12	F.IF.3, F.IF.7, F.IF.9, F.BF.1,		
	(Simple/Compound)			F.BF.2		
9D	Growth and Decay	Feb 13	Feb 14	F.LE.1-3, F.LE.5		
9E	More of everything	Feb 15	Feb 16	F.IF.3, F.IF.5, F.BF.1, F.BF.2		
	***NO SCHO	OOL Feb 1	9 th			
9R	Sequence Review	Feb 20	Feb 21			
	Sequence Test	Feb 22	Feb 23			
Term 3 Final Review Work Day		Feb 26	Feb 28			
Term 3 Final		Mar 1	Mar 2	DEAD DAY		
	**Professional Day ** March 6 th					
	Remediate Day	Mar 6	Mar 7			

TERM 3 ENDS MARCH 9

ALL ASSIGNMENTS MUST BE TURNED IN BY MARCH 1ST (A-DAY) OR MARCH 2ND (B-DAY) TO RECEIVE CREDIT.

7SG Parallel Lines Study Guide

SHOW YOUR WORK FO	R FULL CREDIT. NO	WORK, NO CREDIT.	NO WORK IN PEN.

Targets	Sample	Help	Not Bad	Master	Assn
Understand congruent	Give an example of Alternate Interior Angles,				
angle relationships	Same Side Exterior and Corresponding Angles				
angle relationships	and state if congruent or supplementary.				
Conv on onglo	Using only a compass and straight-				
Copy all aligle	edge, copy the following angle:				
Construct Perellal Lines	Given a line segment and point, not on the line,				
with Congruent Angles	construct a parallel line using a compass and				
with Congruent Angles	straight edge				
Using angle relationships	If angles a and b are corresponding and the				
to find the measure of	measure of angle $a = 4 + 2p$ and $b = 8p - 14$,				
angles.	find p and the measure of a and b.				

Vocabulary

Parallel Lines:						
Perpendicular Lines:	Perpendicular Lines:					
Right Angle:						
Transversal:						
Interior:						
Exterior:						
Adjacent:						
Supplementary Angles:						
Complementary Angles:						

IF $l \parallel m$ in the following image, give an example of each kind of angle:

$I \parallel m$ in the following image, give an ex	ample of each kind	of angle:	≯ p
Vertical Angles: $\angle A$ &			
Corresponding Angles: $\angle D$ &	4	A B	
Same-Side Interior Angles: $\angle C$ &		D/C	> • m
Same-Side Exterior Angles: $\angle H$ &			
Alternate Interior Angles: $\angle D$ &	_		
Alternate Exterior Angles: $\angle H$ &		E / F	
$\angle A$ and $\angle G$ are	Angles	НС	\rightarrow l
$\angle H$ and $\angle D$ are	Angles		
$\angle D$ and $\angle E$ are	Angles	×	

Finding angle measurements

1. If lines *l* and *m* are parallel, $\angle A$ and $\angle E$ are ______ angles and their measurements are ______. If $\angle A = 3x + 20$ and $\angle E = 2x + 60$, find x. ______

What is the measure of $\angle A$? _____ $\angle E$? _____

2. If lines *l* and *m* are parallel, $\angle H$ and $\angle B$ are ______ exterior angles and their measurements are If $\angle H = x + 40$ and $\angle B = -2x + 25$, find x.

What is the measure of $\angle H$? _____ $\angle B$? _____

Follow the step above to practice copying the angles below onto the given rays. Show all markings.

<u>Constructing a Parallel Line Through a Point.</u> (animation at http://www.mathopenref.com/constparallel.http) (Parallel to line PQ, through point R)

- Step 1: Draw a segment through point R that ______ the line PQ at any
- angle. Mark point J where it intersects the line PQ.
- Step 2: Set the width of the ______ to any length **between** point *R* and *J*.
- Draw an _____ across lines \overline{RJ} and \overline{PQ} at J.
- Step 3: Without changing the compass _____, draw a congruent _____ at point
 - *R* in the same orientation as the arc in Step 2.
- Step 4: Measure the distance from X to S.
- Step 5: Copy that same distance from r to the lower arc intersection.

Step 6: Because the corresponding angles $\angle RJQ$ and $\angle XRS$ are congruent, lines \overrightarrow{RS} and \overrightarrow{PQ} are parallel. Construct a line parallel to the line below that passes through the given point. Show All Markings.

8SG Function Operations Study Guide

Targets	Sample Question	Struggle	Meh	Yeah!	Assn
	Given $f(x) \& g(x)$, find $f(x) + g(x)$				8A,
Add and Subtract Functions	algebraically and graphically by hand and by				8B
	technology. Show how with a table.				
Multiply Expressions	Give $f(x) = 3x + 5$ and $g(x) = 5x + 5$.				8B,
Multiply Expressions	Find $f(\mathbf{x})g(\mathbf{x})$				8C,
Shifts (Martical)	Given an equation, explain what would happen				8D,
Sinits (vertical)	if $f(x)$ changes to $f(x) + 4$.				8R

Vocabulary

Parabola:	
Binomial	
Vertical Shift:	
Horizontal Shift	
Vertical Stretch	:

Adding/Subtracting Functions

Lines have only one dimension (width or height) but not	Adding or
subtracting lines only changes how it looks, but does not changes how it looks, but does not changes how it looks, but does not change how it looks how	ange that they are
lines. Adding lines creates a new The input (x)	gives an output $f(x)$.
Linear outputs can be added which give the same equation a	as adding the two
linear functions.	

х	$f(\mathbf{x})$	$g(\mathbf{x})$	$f(\mathbf{x}) + g(\mathbf{x})$	$f(\mathbf{x}) - g(\mathbf{x})$
1	6		12	0
2	9	8		1
3	12		22	2
4		12		3
5		14	32	

-10∟ -10

Λ

Horizontal Shift

Vertical Stretch

Fill in the missing values on the table to the right then use the table above to fill in the table below.

<u> </u>			6
	Slope	Y-int	Equation
$f(\mathbf{x})$			
$g(\mathbf{x})$			
$f(\mathbf{x}) + g(\mathbf{x})$			
$f(\mathbf{x}) - g(\mathbf{x})$			

Graph the equations on the grid. Note that the points in the table can be added or subtracted just like the y-values on a graph to graph the sum or difference of the functions.

Transformations

The "parent graph of a linear	equation is $y = x$. (In the	e parent equation, the slope	is_
and the y-intercept is			

To shift the parent equation vertically (up or down), add or a y-intercept. From the parent graph, write the equation with a vertical shift of +9.

Slope is used to show the steepness of the line/graph. When the slope is constant, the graph will be _____. If the graph is not a line, there can still be a "stretch" over an interval. Another name for slope, then, is "vertical" " as the rise is "stretched" or "smooshed" compared to the slope of 1/1 in the parent equation. For the Vertical Shift equation y = 3x - 6, the vertical stretch would be _____.

The vertical shift and vertical stretch are very obvious in $y = mx + \$ form. Like the	-10			
vertical shift, the horizontal (left or right) shift can be seen in the equation if the slope	Lines	-5 Domont	Crant	L
is factored out of the equation. $(y = m(x + \frac{b}{m}))$.	Linea	Parent	Graph	1

For example: in the equation y = 3x - 6 graphed above, the vertical shift is -6 and the vertical stretch is . Factor out the stretch and the equation becomes y = 3(x - 2). The x-intercept is (2, 0) and the horizontal shift is 2.

HINT: after factoring out the slope/stretch, the shift has the opposite sign of the number in the ______. In a linear equation, this is also the x-_____

Multiplying Functions

Multiplying two one-dimensional figures (linear equations) results in a two dimensional figure. ("When you multiply, you the dimensions.") This results in a dramatic change in your data. Complete the table.

In the table, notice that the outputs repeat when the equations are multiplied. Find the equation for f(x): ______ Find the equation for g(x): ______

What is the vertical shift of f(x)? _____ What is the vertical stretch of f(x)? _____ Write the equation for f(x) that exposes the horizontal shift: _____

What is the vertical shift of g(x)? _____ What is the vertical stretch of g(x)? _____ Write the equation for g(x) that exposes the horizontal shift: _____

Set up the equation for f(x)g(x) that shows the two equations (factors) being multiplied.

Stacking Method: This method uses basic multiplication practices. To multiply 24 X 18,

- 1. Stack one binomial on top of the other. x + 4x + 8
- Multiply the same as multiplying multi-digit numbers like 24 X 18.

Box Method

- 1. Think of each term like the sides of a _____. For (x + 4)(x + 8), (x + 4) could be its length and (x + 8) could be the width.
- 2. Split the binomials to represent each _____.
- 3. Multiply to ______ the area of the smaller boxes.

Add like terms in your box together: $x^2 + 12x + 32$.

x + 4

<u>x + 8</u>

8x + 32

Distributive Method

- 1. A number next to a parenthesis means to multiply. Multiply every term each term in the first set of parentheses by each term in the second set of parentheses.
- 2. (x + 4)(x 5)= x(x - 5) + 4(x - 5) Distribute over addition= $x^2 - 5x + 4x - 20$ and combine like terms, so = $x^2 - x - 20$

Use TWO methods from above to multiply and check your answers (SYW)

1.
$$(x+6)(x+9)$$
 2. $(x+3)(x-1)$ 3. $(x+5)(2x+2)$

9SG Arithmetic and Geometric Sequences and Applications Study Guide

Targets	Sample Question	Ugh	Okay	Got it	Assn
Interpret and model Arithmetic Story Problems.	At the beginning At two minutes At two minutes if the pattern continues.				9A, 9B
Identify & write Arithmetic	Given the sequence 12, 6, 4, 2, find the recursive				
Recursive Equations	equation in proper function notation.				
Identify & write Arithmetic	Given the sequence 3, 6, 9, 12, find the explicit equation				
Explicit Equations	in proper function notation.				
Identify, and create	Graph the Above questions				
Geometric Graphs & tables	Graph the Above questions				
Identify & write Geometric	Write the recursive equation (in proper function				
Recursive Equations	notation) given a table				
Identify & write Geometric	Write the explicit equation (in proper function notation)				
Explicit Equation	given a table.				
Recognize that simple	For a \$1000 loan, Katie could not make any payments				
interest is an example of a	for 10 years, but she would have to pay 15% interest on				
linear arithmetic sequence.	the \$1000 for each year of the loan. Graph				
Identify compound interest	For a \$1000 loan, Katie could not make any payments				
as geometric sequences/	for 10 years, and had to pay 10% interest on the \$1000				
exponential growth on a	for but the interest is compounded monthly. Create a				
graph & table	table and graph the sequence.				
Compound Interest with an	Above—Write an equation to calculate much she would				
equation	pay over the 10 years.				
	A tarantula farm starts with 2 tarantulas that love each				
Growth and Decay	other very much. How many will he have after 2 years				
	if they have 200 babies every 6 months.				
Recognize that elements of	Given the equation $f(x) = 5(1.35)^x$, find the initial				
a compound interest	investment, the growth/decay rate, and the amount of				
equation.	the loan after 5 years.				

While there are other kinds of sequences, this unit only covers Arithmetic and Geometric Sequences.

Vocabulary

Sequence:
Term:
Arithmetic Sequence:
Geometric Sequence:
Common Difference:
Common Ratio:
Recursive Equation:
Explicit Equation:
Exponential:
Growth:
Decay:
Simple Interest:
Compound Interest:

Arithmetic Sequence

Arithmetic sequences come from _______ equations and tables. The graph of an Arithmetic Sequence is a ______. An Arithmetic Sequence has a common difference (*d*) that increases or decreases at a

_____ rate by addition or subtraction from consecutive terms. An arithmetic sequence is "proportional" if there is no vertical shift or y-intercept other than (0, 0).

Two kinds of formulas are written from a sequence: the ______ formula and the explicit formula. The recursive formula reveals how much the values change from one step to the next with a ______ difference. The table to the right shows a common increase (difference—d) of _____.

Х	f(x)
1	7
2	9
3	11
4	13
5	15

Recursive Formula

In function notation, sometime *n* is used instead of x. So f(n) is the output when x = n. The term before *n* is one step before *n* or (n - 1). The output for this term is f(n - 1). An Arithmetic sequence changes from f(n - 1) to f(n) by adding or subtracting a common difference (*d*).

The table above adds 2 for every consecutive change in x. So the recursive function of this table when x = n is f(n) = f(n-1) + 2. Some think of it as "What it is = what it was + the difference." To find what a step "is", 2 is added to the previous steps output.

Explicit Formula (y = mx + b)

An explicit formula gives the outcome for a Arithmetic Sequence, d is the common diffe	ny input <i>n</i> . The y-intercept (where $x = 0$) can be written as $f(0)$. In an rence, so an explicit equation ($y = mx + b$) can be written as $f(n) = dn + f(0)$
For the table above, what is the value of $f(0)$)? What is the value of d ?
If the first figure is $f(1)$, what would be $f(0)$? What would be d ?	
Write the explicit equation for the pattern.	Write the recursive equation.
To write an equation from a sequence, you r $14, \ldots, f(2) = 5$ means that the equation would be $y = 3x - 1$ because . Geometric Sequence	leed to know which stage the number represents. For the sequence, 5, 8, 11,
A geometric sequence has a	ratio "r". Multiply or divide to find the next
Recursive Formula X Y Note14>x228>x2316>x2432>x2564>x2	e that the output values ble in this table. (The lues have a common of 2.)

The recursive equation for a geometric sequence can be written as f(x) = f(x - 1)(r). F(x-1) is the prior term, and r is the common ratio. Above, the **recursive** ______ in function notation would be, f(n) = f(n - 1)(2) or f(n) = 2f(n - 1).

Explicit Formula

The **common ratio** (*r*) is the number used to multiply an output to get the next output. This ratio is written with an to show the number of times or steps (*x* or *n*) is base is multiplied. The step before *x* is (*x* – 1). Geometric equations often multiply the first term rather than the 0th term. The explicit ______ for a geometric sequence **can** be written as $f(n) = f(1)r^{(n-1)}$ where f(n) is the number of the first term and r is the

common ratio. An explicit equation could also be written using the y-intercept as $f(n) = f(0)r^{(n)}$ or from step 2 as in $f(n) = f(2)r^{(n-2)}$. The equation depends on which step the sequence begins.

Х	Pattern	Y	Short Hand
1	3	3	$3 \ge 2^{0}$
2	3 x 2	6	3 x 2 ¹
3	3 x 2 x 2	12	\rightarrow 3 x 2 ²
4	3 x 2 x 2 x 2	24	3 x 2 ³
5	3 x 2 x 2 x 2 x 2 x 2	48	$3 \ge 2^{4n}$
n	?	f(n)	$3 \ge 2^{n-1}$

The common ratio (or multiplier r) can be seen in the 4column table to the left. Notice the repeating multiplier is the same as the multiplier in the pattern's short _____. Note that for the nth value, the exponent is (n - 1)because the table starts on step 1.

In the short _____, note the relationship between the x (input) value and the exponent. The exponent depends on which the first input in the table. How would you write the exponent if the table started on step 2? _____

Circle whether the following tables are **arithmetic or geometric.** Give the **common difference or ratio** and write the **recursive and explicit equations**.

Х	1	2	3	4
Y	6	12	24	48

Arithmetic or Geometric? Difference/Ratio:

Recursive:_____

Explicit:

x	1	2	3	4
f(x)	9	27	81	243

Arithmetic or Geometric? Difference/Ratio: _____ Recursive: _____ Explicit: _____

x	1	2	3	4
f(x)	9	18	27	36

Arithmetic or Geometric? Difference/Ratio: _____ Recursive: _____ Explicit: _____

Exponential Growth and Decay (Geometric Sequence)

Exponential growth and decay, occurs by a fixed percent or ratio (geometric growth or decay). For exponential growth, the rate of change _______ with time – it grows faster and faster. For exponential ______, the rate of change decreased with time – the amount of decay slows down.

In order for a value to grow, a multiplier must be larger than _____. Multiplying by 1 (or 100%) would make a number or any value stay the same. The number above 1 (or 100%) indicates the percentage of the growth.

Multiply 4(1) = 4(1.2) = (20% growth) 4(1.75) = (75% growth) 4(2.5) = (150% growth)

The explicit equation for exponential **growth** is often written $f(x) = a(1 + r)^t$ or $f(x) = f(0)(1 + r)^t$. f(x) is the total amount, *a* or f(0) is the amount of money at the start or step zero, and *t* is the number of compounding periods. The common ratio is *r* (percent of change expressed as a decimal).

A number or value will decrease if multiplied by a number less than _____. For exponential **decay**, we use the formula: $f(x) = a(1 - r)^{t}$.

Multiply 4(1) = 4(.8) = (20% decay) 4(.25) = (75% decay) 4(.05) = (95% decay)

Example of explicit formulas for growth and decay would be

$f(n) = 4(1.2)^t$ would have a 20% growth	$f(n) = 4(1.75)^t$ would have a 75% growth
$f(n) = 4(0.8)^t$ would have a 20% decay	$f(n) = 4(0.75)^t$ would have a 25% decay.

Notice that for growth we use (1 + r) and for _____ we use (1 - r). Why? _____

Look at **GROWTH** and **DECAY** in the following situations using a graph, table, and an equation. A business had a \$10,000 profit in 2000. Then the profit increased by 20% per year for the next 10 years.

Look at **GROWTH** and **DECAY** in the following situations using a graph, table, and an equation.

Graph	Complete	the Table:	Equations
35 Se 30	Note the	t f(t)	Explicit:
25 20 20	change in <i>t</i> .	0 \$32,000 2	$\underline{f(t)} =$
30 15 941 10		4 \$16,700	Decompised (remite it)
o ente		5	Recursive: (write it)
2 4 6 8 10 <i>time (in years)</i>		8	f(t) = f(t-1)(0.85)

Geometric Growth (Compound Interest):

You purchase a car for \$15,000 and the loan has an interest rate of 5% compounding each year.

Make a table:

t	Pattern	f(t)	S.H.
0		\$15,000	
1		\$15,750	
2			

Write an **equation** for the amount of the money you owe after "*t*" years.

If you make NO payments, what is the total amount due after eight years? _____

Geometric Decay (Compounded Loss):

Your friend purchases a car for \$15,000 and knows that his car will depreciate 5% each year in value.

Make a table:

t	Pattern	f(t)	S.H.
0		\$15,000	
1		\$14,250	
2			

Write an **equation** to represent the value of the car after "*t*" years._____.

Estimate the value of the car after eight years.

Simple Interest (Arithmetic Sequence)

Not all growth is exponential. **Simple interest adds or subtracts the same value at every period**. The equation that shows that a quantity grows by the same amount at every step (or constant rate) is ______. The equation starts with the initial value (y-intercept). The amount added every period is the common difference or rate of change.

To calculate how much a value will change at each step, the initial amount will be multiplied by the percent.

For example: An investment of \$3,000 is made at an annual simple interest rate of 5%. This means that \$3000 is invested and it will grow 5% for every time period.

The amount of growth (or common difference/rate of change) comes from **3000 X .05** = **150** per step.

Make a table:

t	Pattern	f(t)	S.H.	What is the y-intercept?
0		\$3,000		What is the slope?
1	\$3,000 + \$150			Write the equation:
2		\$3,300		Find how much money you would have after 8 years
5				f(8) =
This wou	uld be an example of a(n)	sequence and	the graph would be
Simple i differenc	nterest is written in the xe, x is the number of	e form y =	mx + b where y is, and b is	, m is the
**Note t simple ir	hat Simple Interest is ca	lculated us	$ing y = mx + \underline{\qquad}. De$	fine the variables of this equation used to calculate
Y =				X =
M =				B =

COMMON ERRORS:

When writing equations for simple interest, students confuse rate of change with percent growth.

In the example above, with an investment of \$3,000 is made at an annual simple interest rate of 5%. This means that \$3000 is invested and it will grow 5% for every time period. Students often write the equation as f(x) = 3000 + 1.05x.

A table reveals that instead of earning \$150 per time period, the money only increases by \$_____ per period.

t	Pattern	f(t)	S.H.	
0	3,000	\$3,000		٦
1	3,000 + 1.05			
2	3,000 + 1.05 + 1.05			

WRONG!!

Calculate the amount of change from the percentage first and then add/subtract.

Sometimes students calculate the rate of change correctly, but think they have to add a 1. This is only for geometric growth where the original amount is included in the multiplier.