Secondary 1 Term 2

Text \& Reference Manual

Name:
Teacher: \qquad Class Period:

Term 2: October 24 ${ }^{\text {th }}$-December 20

Study Guide Grades	
Unit 4 Study Guide	
Graphing Systems	
Due: 10-31/11-1	
Unit 5 Study Guide	
Solving Systems	
Due: 11-29/30	
Unit 6 Study Guide	
Features of Functions	
Due: 12-11/12	

Please review the following policies for Secondary One:

> Students must pass every Essential Mastery Test (EMT) with an 80% or better in order to receive a passing grade.
$>$ Practice tests for EMT's are available online to help prepare for the tests.
> Student may retake any EMT as many times as necessary to show understanding of the essential standards in the core.
$>$ Any failing grade can be made up to a passing grade until the last week of term
$>$ Students may take missing tests after the end of any term as needed.
$>$ A failing grade must be made within one term to earn a grade higher than a D-
$>$ Traditional textbooks are available upon request but may not align with class content.
> Unless there are extenuating circumstances, term finals may not be retaken for a higher score.
$>$ Homework turned in after the due date will receive a penalty to credit unless excused by the teacher because of absence or other extenuating circumstances.
$>$ Each term includes a final date when homework will no longer be accepted for credit.
$>$ If a student damages a class-provided calculator (TI-84) a fee of $\$ 90$ will be added to school fees and the student will no longer will have access to a school calculator.
$>$ If a student damages a class-provided iPad a fee of $\$ 450$ will be added to school fees and the student will no longer will have access to another calculator.
$>$ The student will complete the study guides included in this packet as part of the homework requirement:

TERM 2: Oct 24 - Dec 20

UNIT 4 - Graphing Inequalities					
Assn			Core Std		
4A Day	Graphing Inequalities	Oct-16	Oct-17		A.REI.7
4B	Inequality Word Problems and Linear	Oct-18	Oct-24		A.REI.7
4C	Systems of Inequalities	Oct 25	Oct 26		A.REI.7
4R	Unit 4 Review	Oct 27	Oct 30		
	Unit 4, Inequalities TEST	Oct 31	Nov 1		

UNIT 5 - Systems of Equations					
Assn	Learning Objective	A Day	B Day	Done	Core Std
5A	Systems of Inequalities	Nov-2	Nov-3		
5B	Solving by Graphing and Estimating Solutions	Nov-6	Nov-7		$\begin{gathered} \text { A.REI.6, } \\ \text { A.REI.12, } \\ \text { A.CED. } 3 \end{gathered}$
5C	Setting Equal	Nov-8	Nov-9		A.REI. 5
5D	Substitution	Nov-10	Nov-13		A.REI. 5
5E	Elimination	Nov-14	Nov-15		A.REI. 5
5F	Systems: Word Problems	Nov-16	Nov-17		SI.MP.5, A.REI. 6
5G	Systems: More Practice	Nov-20	Nov-21		
	Thanksgiving Break (November 22-26)				
5R	Systems: Review	Nov 27	Nov-28		
	Unit 5, System of Equations TEST	Nov 29	Nov 30		

UNIT 6-Features of Functions					
Assn	Learning Day	B Day			
6A	Function Rules	Dec 1	Dec 4		F.IF.1, F.IF.2
6B	Domain \& Range	Dec 5	Dec 6		F.IF.1, F.IF.5
6C	Max and Min	Dec 7	Dec 8		F.IF.1
6R	Unit 6 Review/Test	Dec 11	Dec 12		
	Term 2 Final Review	Dec 13	Dec 14		
	Term 2 Final (DEAD Day is the day of the term final)	Dec 15	Dec 18		
	Christmas Break (Dec. 20-Jan. 3)				

END OF TERM DECEMBER 20

Unit 4 Linear Inequalities

SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

Targets	Sample	Ugh	Meh	Yeah	Assn
Graph the solution set of an inequality with 2 variables	$\mathrm{x}+\mathrm{y}<1$	$\left\{\begin{array}{l}y>\frac{3}{5} x+3 \\ y \leq-\frac{3}{5} x+3\end{array}\right.$			
Graph the system of inequalities.	4 B				
Write and solve system of inequalities from a story problem	Sara made more than $\$ 50$ selling $\$ 5$ pies and $\$ 8$ cakes. Jana made less than $\$ 100$ selling the same pies and cakes. What graph would show them selling the same number of pies and cakes?			4 B	
Approximate solution sets by looking at a graph	By looking at the graph, approximate the solution of the graphs.		$4 \mathrm{~A}, 4 \mathrm{~B}$		
Solve and find the solution set (Graph) with 1 variable on a coordinate grid.	$2(\mathrm{x}+5)+2<1+\mathrm{x}$				4A, 4B

Graphing Inequalities on a number line.

- Use a closed circle, when the \qquad can be equal to the variable. \qquad or \leq is used in an inequality.
- Use an open circle if the answer is not part of the
\qquad set. Use the symbol > or \qquad _.

Graphing Inequalities on a coordinate plane.

Step 1: Graph the line the same as an equation.
a. If an inequality sign states that the variable could be equal to the answer $(\leq$ or $\geq)$, the line will be
\qquad —.
b. If an inequality states that the variable will be less or more than the answer and NOT equal to ($<$ or $>$), the line will be \qquad .
Step 2: Shade the proper side of the line.
Shading--DO NOT USE THE GREATER/ LESS THAN SIGN TO DETERMINE WHERE TO SHADE.

Example: $\quad \mathrm{y} \leq \frac{2}{3} \mathrm{x}-2$

The boundary line is solid because it is \leq.

Note that when we test $(0,0)$, we get $0 \leq \frac{2}{3}(0)-2$. Because 0 is NOT less than -2 , shade the side that
DOES NOT contain (0,0).

The $(\mathbf{0}, \mathbf{0})$ Test (or any point) will help determine where to shade. After drawing the \qquad (whether dotted or solid), plug a point like $(0,0)$ into the inequality.

For example, given $2 x+5>y$, plug in $(0,0)$ to get $2(0)+5>0$. The inequality is true, so the side of the line that contains $(0,0)$ is \qquad . If the inequality is incorrect, (like $0 \geq-3(0)+3$ then the side of the line that does not contain $(0,0)$ is \qquad .

If the point $(\mathbf{0}, \mathbf{0})$ lies on the line, perform the test with a different point on either side of the \qquad ..

To graph $x>2$ on a coordinate plane, start with the number line and use a
\qquad for the boundary.

- Use a SOLID \qquad when the solution can be equal to the variable (\geq or
\qquad —.
- Use a DOTTED line if the answer is not part of the \qquad set. Use \leq or \qquad in the inequality.

Give two differences between the graphs of $x>2$ and $y \geq 2$
-
-
Graph the solutions to the inequalities below.
$y \leq \frac{2}{3} x+6$
$4 x+2 y \leq 8$

$$
y \leq 9 x+12
$$

Systems of Inequalities

A system of inequalities has two or \qquad inequalities graphed on the same grid. The solution set contains the points that are double \qquad .

Example: $y \leq 2 x+5$ and $y \geq-3 x+3$

Graph the equations on the grid from $y=m x+b$, from a table, or from finding the intercepts.

The solution set includes ALL the points that are double shaded.
$(0,0)$ IS a solution to the first inequality. Shade on the side of $(0,0)$. $(0,0)$ IS NOT a solution to the second inequality. Shade on the other side of the line.

Graph the following systems of inequalities and circle are in the solution set.

5SG Systems of Equations Study Guide

SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

Targets	Sample	Ugh	OK	Yep!	Assn
Approximate solutions by looking at a graph.	By looking at the graph, approximate the solution of the graphs.				5 A
Find solution(s) from a system of equations by setting equal/substitution	Solve the system of equations by setting them equal to each other. $\mathrm{y}=\mathrm{x}+8$ AND $2 \mathrm{x}+\mathrm{y}+10=0$ or $\mathrm{x}+\mathrm{y}=3$ AND $\mathrm{x}=2 \mathrm{y}$				$5 \mathrm{~A}, 5 \mathrm{~B}, 5 \mathrm{R}$
Find solution(s) from a system of equations by elimination	Use elimination to solve the following system of equations: $\mathrm{x}+\mathrm{y}=13$ AND $\mathrm{x}-\mathrm{y}=5$			5C, 5R	
Be able to explain the number of solutions a system has.	How many solutions does the following equations have and how do you know.			$5 \mathrm{~A}, 5 \mathrm{R}$	
Set up a system from a word problem.	Alex bought 3 tacos and 4 drinks at Amigo Bell for $\$ 16.50$. If Sue bought 6 tacos and 2 drinks for $\$ 22.50$, what is the cost of the tacos and drinks.			5D, 5R	

- A system has more than one \qquad .
- Systems can be for inequalities or for \qquad .
- Systems of equations means to find where two different equations have the \qquad answer (or cross on a grid). Linear \qquad have two variables and both \qquad have the same value.

Number of Solutions

- NO SOLUTION: the equations have the same \qquad and different y-intercepts.
- INFINITE SOLUTIONS: the equations simplify to be the \qquad equation. They will have the same slope and same \qquad . (They intersect an infinite number of times.)
- ONE SOLUTION: the equations have different \qquad .

Arrange the equations to show how many solutions each system has. Then tell how you know.

$$
\left\{\begin{array}{c}
x+2 y=-5 \\
5 x+25=-10 y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
y=-4 x+25 \\
24 x+6 y=11
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x+2 y=-5 \\
x-6 y=11
\end{array}\right.
$$

Solve by Setting Equal

Find a solution for $8 x+16 y=-24$ and $x-y=9$.
Step 1. Solve both equations for the same
\qquad . (The variable must be written
with a co-efficient of \qquad .)
Step 2. Since the two equations are equal to the same variable, set them \qquad to each other.
Solve the new \qquad .
Step 3. Plug this value into either original equation to get the other half of the \qquad point. (Since we know that $y=-4$, we can put that into either equation. The second equation is the easiest, so I used that one.)

So, the "solution" is $(5,-4)$. This is the only \qquad that the two equations have
 in common. Double check the answer by plugging the point $(5,-4)$ into BOTH equations.

Solve the following by Setting Equal

$$
\left\{\begin{array}{l}
y=-5 x+2 \\
y=2 x-11
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x+2 y=-5 \\
x-6 y=11
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
4 \mathrm{x}+2 \mathrm{y}=-20 \\
x-y=2
\end{array}\right.
$$

Solving by Substitution

Find a solution for $\left\{\begin{array}{c}8 x+16 y \\ x-y=9\end{array}\right.$
Step 1. Solve one of the equations for one
Step 2. Plug that answer into the other and solve for the variable.
Step 3. Plug that number into either equation and solve for the other \qquad .
Step 4. List the answer as a \qquad point.
Step 5: CHECK by plugging the point into
\qquad equations.

Use SUBSTUTION to solve the following equations.

$$
\left\{\begin{array}{l}
x+6 y=15 \\
-x+4 y=5
\end{array}\right.
$$

$\left\{\begin{array}{c}2 x+3 y=-5 \\ -x+y=5\end{array}\right.$
$\left\{\begin{array}{c}3 x-y=30 \\ x+y=14\end{array}\right.$

Solve by Elimination

Solve the following system: $\left\{\begin{array}{l}5 x+3 y=-8 \\ 2 x+3 y=4\end{array}\right.$
Step 1: Align the equations with the variables and \qquad in the same order.
Step 2: If necessary, multiply the one or both of the equations to make ONE of the variables have inverse coefficients (same number but one positive and one \qquad). Add the two equations to eliminate that
\qquad . (Add them to equal zero.) Solve for the remaining variable.
Step 3 Plug that number into either equation and solve for the other \qquad .

Step 4. Check the solution by plugging the x and y into equations.

Use ELIMINATION to solve the following.

1
$\begin{aligned} & 5 x+3 y=-8 \\ & 2 x+3 y=4 \end{aligned}$
$\begin{aligned} 2(-4)+3 y & =4 \\ -8+3 y & =4 \\ +8 \quad & =+8\end{aligned}$
$\underline{3 y}=\underline{12}$
$3=3$

$$
\left\{\begin{array} { c }
{ - x + 4 y = 3 } \\
{ x + 2 y = 9 }
\end{array} \quad \left\{\begin{array} { c }
{ 2 x - 3 y = 1 } \\
{ 2 x + 3 y = - 5 }
\end{array} \quad \left\{\begin{array}{l}
3 x+2 y=10 \\
5 x+2 y=14
\end{array}\right.\right.\right.
$$

Solve by Graphing. (See Unit 1 Study Guide for How to Graph Equations) Graphing gives a good estimate of the solution set.

Step 1: Graph the two \qquad . See where they intersect. This is the
\qquad . (This is an estimate, but it should be very close to the true solution.)
Step 2: Check the solution algebraically with one of the \qquad above.

Solve the following by graphing. Use the method below the graph to check your work. Explain why that method would be best for that problem.

Elimination:
$\left\{\begin{array}{l}x+2 y=-5 \\ x-6 y=11\end{array}\right.$

Substitution:

Explain why that method would be best for each of the problems above.

Unit 6 Features of Functions SG

Targets	Sample	Ugh	Help	Got it	Assn
Identify discrete and continuous data.	Tell whether the following graph is continuous or discrete and explain why.				6A, 6R
Proper use of function notation.	Given $f(x)=\frac{1}{2} x-1$, find $f(2)$. What is $f(x)=3$?				6B, 6R
Write maximum and minimum using proper notation.	Given the table and graph, give the max and min of the data using proper notation				6C, 6R
Identify domain and range using proper notation.	Given the table and graph, give the Domain and Range of the data using proper notation				6B, 6R
Identify a function from a graph, table and story problem	Justify why this story represents a function or not.				6A, 6R
Recognize whether a function increases or decreases over an interval.	Over the given interval, explain where the graph/table/story increases or decreases, or neither.				6A, 6B, 6C, 6R

Vocabulary

Function: \qquad
Discrete:
Continuous: \qquad
Domain: \qquad
Range: \qquad
Increasing: \qquad
Decreasing: \qquad
Maximum: \qquad
Minimum: \qquad
Interval: \qquad

Function

A function is a rule (math sentence) that has only one answer (output) for each x (\qquad). The following relation IS a function: $\{(9,0),(8,-1),(3,1),(7,2)\}$. There is ONE output (y) for each input (x). The following relation is NOT a function: $\{(3,1),(7,-5),(3,0),(5,4)\}$. There are TWO different y values (\qquad) for the input of 3 .

Given $\{(7,-2),(5,-4),(3,2),(7,2)\}$, is this relation a function? \qquad Explain why or why not \qquad

To check if a graph is a \qquad , use the vertical line test. The vertical line test shows that if a vertical line intersects the graph more than once, then the relation is NOT a \qquad _.
a.

b.
c. Is the following graph a function? Explain \qquad

Function Notation

The use of $f(x)$ only means that the math sentence is a \qquad . It does NOT mean f times x . It means that every input (x) used will give only one \qquad (y). The notation $f(2)$ means that the number in parentheses (__) will be used for x in that function to solve for \qquad . For example: If $f(x)=3 \mathrm{x}+5 f(4)=3(4)+5$, so $f(4)=17$.

Interval Notation ("From this x to this x ")

Intervals consider only parts of a \qquad To consider the points from where $x \geq-5$ to $x=0$, write it with the notation [-5 , $0]$. To consider the points from where $\mathrm{x}>-5$ to $\mathrm{x}=0$, write it with the notation $(-5,0]$.. The horizontal piece from 0 to 4 does not include the 0 but does include the 4 , so the interval is written (0 , 4]. If the interval starts or \qquad at infinity, use parentheses. Why?

In the following graph at $\mathrm{x}=0$, it looks like the vertical line test would show that this is not a \qquad . However, an open circles means the \qquad is NOT included, so the vertical line test still works and $g(x)$ \qquad a function.

Domain and Range

The domain is the set of all the x - \qquad of the function. The range is the set of the
\qquad values. If the data are continuous, use Interval Notation (above). If the data are discrete, use set notation (\{\}) to list the elements of the set.
The domain and range of a table (like a graph), are the input and \qquad values.
The domain of the graph above is $(-\infty, \infty)$. The range is [-2 , \qquad).
The domain of the table right is $\{-8,1,2,14,16,21\}$. The range is $\{-2,0,1,4,7,9\}$

x	$f(x)$
1	7
16	4
-8	9
14	1
2	-2
21	0

Discrete and Continuous Data

Data are continuous when the \qquad is unbroken. Discontinuous data are graphed with a \qquad .
On the interval (domain) [$-4,0]$, the data above is \qquad . On the interval [-4 to 3$]$, the graph is broken showing that data are discontinuous. Data are discrete when the \qquad contains only points.

Real life situations can be described as continuous or discrete. The air we breathe throughout a day is \qquad (hopefully). While the numbers of people invited to a party are discrete (hopefully).

Increasing and Decreasing

A function "increases" when the slope is \qquad . It "decreases" when the \qquad is negative. If the graph is not linear, consider the slope over an interval. On the graph above from $(4,8]$, the graph is \qquad _.

Write the interval where the graph is increasing? \qquad Where it is decreasing? \qquad Where would the graph not be either increasing or decreasing? \qquad Explain: \qquad
At the point where a graph changes from increasing to decreasing (like a peak), parentheses are used instead of since the slope at that point would be zero.

Maximum and Minimum

The \qquad is the point with the highest output value (y) over an interval. The minimum is the
\qquad with the lowest output value over an interval. In a table above, the max and min point(s) can be found by finding the highest $f(x)$ value and the lowest $f(x)$ \qquad . The min point of the table above is $(2,-2)$. Find the max.

The linear function $f(x)=x-2$ has no maximum or \qquad because $f(x)$ ranges from $(-\infty, \infty)$.

