Name: \qquad Per: \qquad
SHOW YOUR WORK. WORK IN PENCIL
Write the next 3 terms and state if it is arithmetic, geometric, or neither. If arithmetic or geometric, answer the following questions. First term is $\boldsymbol{f}(\mathbf{0})$.

1) $1,4,7,10,13$, \qquad , \qquad , \qquad

CIRCLE: Arithmetic/Geometric/Neither
Common Difference/Common Ratio: \qquad
2) $4,16,36,64,100$, \qquad , \qquad , \qquad
CIRCLE: Arithmetic/Geometric/Neither
Common Difference/Common Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
3) $4,-12,36,-108,324$, \qquad , \qquad , \qquad 4) $-4.25,-2.75,-1.25,0.25$, \qquad , _ , -
CIRCLE: Arithmetic/Geometric/Neither
Common Difference/Common Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
5) $0,3,8,15,24$, \qquad , \qquad ,
6) $100,50,25$, \qquad , \qquad , \qquad
CIRCLE: Arithmetic/Geometric/Neither
Common Difference/Common Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
7) $9,3,1, \frac{1}{3}, \frac{1}{9}$, \qquad , \qquad -
8) Make a 4-column table for \#7.

CIRCLE: Arithmetic/Geometric/Neither
Common Difference/Common Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
Use the explicit equation, find $f(n)$ when $\mathrm{n}=0,1,2,3,4$.

1		9	

(Use a table if needed)
9. $f(n)=-2 n+5$

10. $f(n)=2\left(3^{\mathrm{n}}\right)$
n
n $f(n)$ 0 1 2 3

11. $f(n)=4(2)^{\mathrm{n}}$
a. $f(0)=$ \qquad
b. $f(1)=$ \qquad
c. $f(2)=$ \qquad
d. $f(3)=$ \qquad
e. $f(4)=$ \qquad
Find each value for the sequence. Tell whether it is arithmetic or geometric and write the recursive equation.
12. $f(\mathrm{n})=5(-2)^{\mathrm{n}}$
a. Find $f(3)=$ \qquad
13. $f(n)=5 n+20$
b. Find $f(4)=$ \qquad
a. Find $f(5)=$ \qquad
b. Find $f(6)=$ \qquad
c. Arithmetic or Geometric
c. Arithmetic or Geometric
d. Write the recursive equation: \qquad d. Write the recursive equation: \qquad
14. Mr. and Mrs. Gloop want their son, Augustus, to do his homework each day. Augustus loves to eat candy, so his parents have decided to motivate him to do his homework by giving him candies for each day that the homework is complete. Mr. Gloop says that on the $1^{\text {st }}$ day that Augustus turns in his homework, he will give him 10 candies. On day 2 he promises to give 20 candies, on the third day he will give 30 candies, and so on.
a. Would this represent an arithmetic or geometric sequence? \qquad
b. Write both a recursive and an explicit formula that shows the number of candies that Augustus earns on any given day with his father's plan. Rec: $F(x)=$ \qquad Exp: $\mathrm{F}(x)=$ \qquad
c. Determine how many candies Augustus will receive on day 30 in this plan. How many candies he would eat on day 30 ? $F(30)=$ \qquad
15. Augustus's mom is afraid that all that candy will make his weight problem worse, so Augustus tells his parents that he will get only 2 candies on day 1 , get 6 candies on day 2,18 on day 3 , and so on as he completes his homework.
a. Is this an arithmetic or geometric sequence? \qquad
b. Write both a recursive and an explicit equation of the amount of candy that Augustus would get each day he reaches his goal (of complete his homework) with the new plan.
Rec: $M(x)=$ \qquad
$\operatorname{Exp}: M(x)=$
c. Use the explicit formula to predict the number of candies that Augustus would earn on the 30th day with this plan. $M(30)=$ \qquad
d. Which plan is better for Augustus to lose weight? Explain why \qquad

e. Graph BOTH explicit equations from \#15 and \#16 to the right.

Complete each of the table and answer the following questions:

20. Write the following inequality in slope-intercept form: $-2 y+7 x-2<3(x+2)$
a. Slope: \qquad , y-intercept:
b. Will the boundary line be Solid or Dotted? \qquad
c. Is the point $(3,-1)$ in the solution set? \qquad Explain.

