\qquad Per: \qquad
SHOW YOUR WORK. WORK IN PENCIL.

1. Gavin needs to get into shape because he keeps chewing gum in class. He keeps track of the number of push-ups he can do in the chart below if he starts with day 1 to the right. a. Make a four column table with the number of push-ups he does each day.

n	Pattern	$f(n)$	Shorthand
1			
2			
3			
4			
5			

b. Assuming the pattern continues, how many push-ups will he do on day 10 ? \qquad
c. Is this pattern arithemetic? \qquad Explain \qquad
d. Write a recursive equation representing the number of push-ups on any day \qquad
e. Write an explicit equation to show how many push-ups Gavin will do on day n. (Use proper function notation.) \qquad
2. His friend, Phillip decides to start by doing 1 push-up on the first day. The next day, he doubles the number of push-ups. He continues to double the number of push-ups each day.
a. Make a four column table with the number of push-ups Phillip does.

n	Pattern	$f(n)$	Shorthand
1			
2			
3			
4			
5			

b. Who will do more push-ups on day 4 ? \qquad
c. How many push-ups will Phillip do on day 8 ?

d. Is this pattern arithemetic? \qquad Explain
\qquad $-$
e. Graph (and label) the table for both boys on the grid to the right.
3. Use tables to evaluate $f(x)$ for each equation when $x=\{-1,0,1,2\}$.

a. $f($		b. $f(x)=(-3)^{x}$		c. $f(x)=-3^{\mathrm{x}}$		d. $f(x)=2^{x-1}$	
x	$f(x)$	x	$f(x)$	x	$f(x)$	x	$f(x)$
-1		-1		-1			
0							
1							
2		2					

Complete the following. If neither, explain why.
4. $4,14,24,34,44, \ldots$
5. $3,15,75,375, \ldots$
6. $-1,6,-36,216, \ldots$

Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Next two terms: \qquad , \qquad
Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Next two terms: \qquad , \qquad
Arithmetic/Geometric/Neither Common Difference/Ratio: \qquad Next two terms: \qquad ,
7. Mr. Mann, a math teacher, has a 10% off late paper policy. Each day that an assignment is late a student receives 90% of the credit he or she would have received the day before.
a. Make a table to show the potential credit that can be earned. Use a fraction to show the loss in credit.

x	Pattern	y	Short Hand
0		100	
1		90	
2		81	
3			
4			

b. After how many days would your score for a late assignment drop below 50% ?
c. When will your score reach 0 ? \qquad Explain.
\qquad
d. Write a recursive equation:
e. Write an explicit equation:

Use the explicit equation to find the common ratio r and $f(2), f(3), f(4) \& f(8)$. Make a 4-column table to help find your values.
8. $f(n)=2\left(\frac{1}{2}\right)^{n}$
$r=$ \qquad
$f(2)=$ \qquad $f(3)=$ \qquad
$f(4)=$ \qquad
$f(8)=$ \qquad

0		2	

Given the recursive formula for the geometric sequence find $f(2), f(3), f(4)$ and the common ratio r.
Extra Credit: Write the explicit formula.
9. $f(n)=f(n-1)(2)$ and $f(1)=2$
10. $f(n)=f(n-1) \times 3$, and $f(1)=-3$ $f(2)=$ \qquad $f(3)=$
$f(2)=$ \qquad $f(3)=$ \qquad
\qquad
$f(4)=$ \qquad $r=$ \qquad
$f(4)=$ \qquad $r=$ \qquad
EC: Explicit Formula: \qquad EC: Explicit Formula: \qquad _

Given a term in the geometric sequence and the common ratio " \mathbf{r} ", find the two terms starting with $f(2)$. Write the explicit and recursive formulas.
11. $f(0)=5, r=5$

$$
\begin{array}{ll}
f(2)= & \text { Explicit }= \\
f(3)= & \text { Recursive }=
\end{array}
$$

12. $f(1)=4, r=-3$
$f(2)=\quad$ Explicit $=$ \qquad
$f(3)=\quad$ Recursive $=$ \qquad

Finish each table. Circle "A" if Arithmetic or "G" if Geometric. List the common difference OR common ratio. Write the recursive AND explicit equations in function notation.
13.

Term	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$
Value	3	8	13	18	23			

A or G $\quad \mathrm{d}$ OR r $=$ \qquad Recursive Equation: \qquad Explicit Equation: \qquad

Term	0	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$
Value	$3 / 2$	3	6	12	24			

14.

A or G $\quad \mathrm{d}$ OR r $=$ \qquad Recursive Equation: \qquad Explicit Equation: \qquad

