9B Geometric Sequences

SHOW YOUR WORK. WORK IN PENCIL.

1. Gavin needs to get into shape because he keeps chewing gum in class. He keeps track of the number of push-ups he can do in the chart below if he starts with day 1 to the right.

a. Make a four column table with the number of push-ups he does each day.

п	Pattern	f(n)	Shorthand		F
1					H
2					
3					F
4					
5				1	

- b. Assuming the pattern continues, how many push-ups will he do on day 10?
- c. Is this pattern arithemetic? _____ Explain _____
- d. Write a recursive equation representing the number of push-ups on any day _____
- e. Write an explicit equation to show how many push-ups Gavin will do on day *n*. (Use proper function notation.)
- 2. His friend, Phillip decides to start by doing 1 push-up on the first day. The next day, he doubles the number of push-ups. He continues to double the number of push-ups each day.

•• P ••	push aps, no continues to double the number of push aps cuch aug.								
a. N	Iake a fou	r column table with the number of push-ups Phillip does.							
	n	<i>n</i> Pattern $f(n)$ Shorthand							
	1								
	2								
	3								
	4								
	5								

- b. Who will do more push-ups on day 4?
- c. How many push-ups will Phillip do on day 8?
- d. Is this pattern arithemetic? _____ Explain _____
- e. Graph (and label) the table for **both boys** on the grid to the right.

3. Use tables to evaluate f(x) for each equation when $x = \{-1, 0, 1, 2\}$.

<i>a</i> . $f(x) = 10^{x}$				
x	f(x)			
-1				
0				
1				
2				

b. $f(x) = (-3)^{x}$ $x \qquad f(x)$ -1 2

$c. f(x) = -3^x$					
x	f(x)				
-1					
	•				

d. f(x)	$=2^{x-1}$
---------	------------

X	f(x)

Complete the following. If neither, explain why.

4. 4, 14, 24, 34, 44, ...

5. 3, 15, 75, 375, . . .

Arithmetic/Geometric/Neither Common Difference/Ratio: _____ Next two terms: _____, ____ Arithmetic/Geometric/Neither Common Difference/Ratio: _____ Next two terms: _____, ____ 6. -1, 6, -36, 216, ...

Arithmetic/Geometric/Neither Common Difference/Ratio: _____ Next two terms: _____, ____

Name:

7. Mr. Mann, a math teacher, has a 10% off late paper policy. Each day that an assignment is late a student receives 90% of the credit he or she would have received the day before.

Х	Pattern	У	Short Hand
0		100	
1		90	
2		81	
3			
4			

a. Make a table to show the potential credit that can be earned. Use a fraction to show the loss in credit.

- b. After how many days would your score for a late assignment drop below 50%?
- c. When will your score reach 0? _____ Explain. _____
- d. Write a recursive equation:

e. Write an explicit equation:

Use the explicit equation to find the common ratio r and f(2), f(3), f(4) & f(8). Make a 4-column table to help find your values.

8. $f(n) = 2\left(\frac{1}{2}\right)^n$	<i>r</i> =	0	2	
<i>f</i> (2) =	<i>f</i> (3) =			
	£(0)			
<i>f</i> (4) =	<i>f</i> (8) =			

Given the **recursive formula** for the **geometric sequence find** f(2), f(3), f(4) and the common ratio r. Extra Credit: Write the explicit formula.

9.	f(n) = f(n-1)(2)	2) and $f(1) = 2$
	<i>f</i> (2) =	<i>f</i> (3) =
	f (4) =	<i>r</i> =
EC	: Explicit Formula:	

$10. f(n) = f(n-1) \times 3,$	and $f(1) = -3$
<i>f</i> (2) =	<i>f</i> (3) =
<i>f</i> (4) =	<i>r</i> =
EC: Explicit Formula:	

Given a term in the geometric sequence and the common ratio "r", find the two terms starting with f(2). Write the explicit and recursive formulas.

11. $f(0) = 5, r = 5$		12. $f(1) = 4, r = -3$		
<i>f</i> (2) =	<i>Explicit</i> =	f(2) = Explicit =	_	
<i>f</i> (3) =	<i>Recursive</i> =	f(3) = Recursive =		

Finish each table. Circle "A" if Arithmetic or "G" if Geometric. List the common difference OR common ratio. Write the recursive AND explicit equations in function notation. 13.

Term	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Value	3	8	13	18	23			

A or G	d OR r =	Recursive Equation:		Explicit Equation:	
--------	----------	---------------------	--	--------------------	--

14.

Term	0	1 st	2^{nd}	3 rd	4 th	5 th	6 th	7 th
Value	3/2	3	6	12	24			

A or G d OR r = _____ Recursive Equation: _____ Explicit Equation: _____