\qquad

The following pattern represents $f(x)$. The second table represents $g(x)$.

1. Find the equations for $f(x)$ \qquad and $g(\mathrm{x})$ \qquad
a. Graph $f(\mathrm{x})$ and $g(\mathrm{x})$ on the graph. Use different colors for the two graphs and label your lines.
b. Complete the tables for $f(\mathrm{x})$.

x	$f(x)$
-3	
-2	
1	
2	
5	

c. What is $f(-2)$? \qquad What is $f(1)$? \qquad

e. What is $g(-2)$? \qquad What is $g(-1)$? \qquad
f. What is $f(-2)+g(-2)$? \qquad What is $f(-2)+g(-1)$? \qquad
g. Where does $f(\mathrm{x})=g(\mathrm{x})$ on your graph? \qquad
h. Show by substitution or elimination that your answer to the system is correct.
i. Combine your tables above to show the outputs for $f(\mathrm{x})$ and $g(\mathrm{x})$.
j. Add the outputs to show $f(\mathrm{x})+g(\mathrm{x})$.
k. Using the table, find the equation for $f(\mathrm{x})+g(\mathrm{x})$ \qquad .

1. Graph your new function $f(\mathrm{x})+g(\mathrm{x})$ in a different color above.
m . How does the slope of the new equation compare to $f(\mathrm{x})$ and $g(\mathrm{x})$?

x	$f(\mathrm{x})$	$g(\mathrm{x})$	$f(\mathrm{x})+g(\mathrm{x})$
-2			
-1			
0			
1			
2			
5			

n. How does the y -intercept of the new equation compare to $f(\mathrm{x})$ and $g(\mathrm{x})$?
o. Write the equation for $f(\mathrm{x})-g(\mathrm{x})$ \qquad .
p. How does the slope of the new equation compare to $f(\mathrm{x})$ and $g(\mathrm{x})$?
q. How does the y-intercept of the new equation compare to $f(\mathrm{x})$ and $g(\mathrm{x})$?
r. Graph your new function $f(\mathrm{x})-g(\mathrm{x})$ in a different color above.
s. Explain how you found your equation.
2. If $f(x)=3 x+5$ and $g(x)=-2 x+4$. SYW for each of the below.
a. $f(1)=$ \qquad c. $f(1)+g(1)=$ \qquad e. $f(\mathrm{x})+g(\mathrm{x})=$
b. $g(1)=$ \qquad d. $f(1)-g(1)=$ \qquad f. $f(\mathrm{x})-g(\mathrm{x})=$ \qquad
3. If $f(x)=-5 x+8$ and $g(x)=6 x+12$. SYW for each of the below.
a. $\quad f(2)=$ \qquad c. $f(\mathrm{x})+g(\mathrm{x})=$ \qquad e. $f(2)+g(2)=$ \qquad
b. $g(2)=$ \qquad d.
$f(\mathrm{x})-g(\mathrm{x})=$ \qquad f. $f(2)-g(2)=$ \qquad
4. Use the non-linear data from the table to answer the questions.
a. What is $a(-3)+b(-3)$?
e. What is $a(-1)+b(-1)$?
b. What is $a(0)+b(0)$?
f. What is $a(-1) b(-1)$?
c. What is $a(0) b(0)$?
g. Find where $a(\mathrm{x})=1$
d.What is $a(7)-b(7)$?
h. Find where $b(\mathrm{x})=-5$

x	$\mathrm{a}(\mathrm{x})$	$\mathrm{b}(\mathrm{x})$
-3	1	-1
-1	7	-5
0	-3	-10
2	8	2
7	3	3

5. If $h(x)=3 x+12$,
a. What is the slope? \qquad Y-intercept? \qquad X-intercept? \qquad
b. How could I change $h(x)$ to make each point on the line shift 5 units lower? \qquad
EC? How could I change $h(x)$ make each point on the line shift 3 units to the right? \qquad
6. Fill in the following table for three new functions. Count by 1 's on the x-axis.

x	$f(\mathrm{x})$	$g(\mathrm{x})$	$f(\mathrm{x})+g(\mathrm{x})$	$f(\mathrm{x})-g(\mathrm{x})$	$f(\mathrm{x}) g(\mathrm{x})$
-5	42	-12	30	54	-504
-3	30	-4		34	
-2	24	0			
0	12	8			
1	6	12	18		
3	-6	20			-120
5	-18	28			

a. What is $f(1)$? \qquad What is $f(3)$? \qquad
b.Find \& graph the equation for $f(\mathrm{x})$:
c.Factor out the slope of $f(x)$: \qquad
d. What is the \mathbf{x}-intercept of $f(\mathrm{x})$? \qquad
e. What is $g(1)$? \qquad Where is $g(\mathrm{x})=20$? \qquad

f. Find \& graph the equation for $g(x)$: \qquad
g.Graph $f(\mathrm{x})$ and $g(\mathrm{x})$ on the coordinate grid.
h.Find the equation for $f(\mathrm{x})+g(\mathrm{x})$: \qquad
i. Graph $\boldsymbol{f}(\mathbf{x})+\boldsymbol{g}(\mathbf{x})$ on the coordinate grid in a different color.
j. Circle $f(1), g(1)$, and $f(1)+g(1)$ on the graph.
k. How could you find the y-intercept for $f(\mathbf{x})-\boldsymbol{g}(\mathbf{x})$ using only the graph?

1. How did you find your values for $\boldsymbol{f}(\mathbf{x}) \boldsymbol{g}(\mathbf{x})$?
