\qquad

Use the figure to the right below to answer the following questions. In this figure line l is parallel to line \boldsymbol{m} and line \boldsymbol{o} is perpendicular to line \boldsymbol{m}. SYW. Each question is independent from the others.
Example: If $\angle 11$ and $\angle 13$ are vertical angles (the relationship), the angles are (congruent)
(So we know that $\angle 11$ must equal $\angle 13$). If $\angle 11=[-3(2 x-5)]^{\circ}$ and $\angle 13=(-14 x-17)^{\circ}$.
a. What does x equal? __-4__
b. What is the measure of $\angle 11 ?$
c. What is the measure of $\angle 13 ?$

$$
\begin{gathered}
-3(2 x-5)=-14 x-17 \\
-6 x+15=-14 x-17 \\
8 x=-32 \\
x=-4
\end{gathered}
$$

1. If $\angle 13$ and $\angle 14$ are a \qquad pair, together they $=$ If $\Varangle 13=(s-2)^{\circ}$ and $\Varangle 14=(3 s+2)^{\circ}$,
a. What does s equal? \qquad
b. What is $\Varangle 13$? \qquad
c. What is $\Varangle 14$? \qquad

2. If $\angle 5$ and $\angle 4$ are \qquad angles together they $=$ \qquad . If $\Varangle 5=(3 b+12)^{\circ}$ and $\Varangle 4=(2 b-22)^{\circ}$
a. What does b equal? \qquad
b. What is $\measuredangle 4$? \qquad c. What is $\Varangle 5$? \qquad
3. If $\angle 4$ and $\angle 11$ are \qquad interior angles and so the angles are \qquad . If $\Varangle 4=[2(4 p-3)-8]^{\circ}$ and $\Varangle 11=(4+2 p)^{\circ}$.
a. Solve for p . \qquad
b. What is $\Varangle 4$? \qquad
c. What is $\Varangle 11$? \qquad
4. If $\angle 13$ and $\angle 1$ are alternate \qquad angles and so they are \qquad .

If $\Varangle 13=(-1+2 g)]^{\circ}$ and $\Varangle 1=(5 g+4 g-8)^{\circ}$
a. Solve for g. \qquad
b. What is $\Varangle 13$? \qquad c. What is is $\Varangle 1$? \qquad
5. If $\angle 4$ and $\angle 12$ are \qquad
\qquad angles and so the angles are \qquad .

If $\Varangle 4=(r-4)^{\circ}$ and $\Varangle 12=(3 r-16)^{\circ}$.
a. Solve for r . \qquad
b. What is $\Varangle 4$? \qquad c. What is $\Varangle 12$? \qquad
6. If $\angle 4$ and $\angle 13$ are \qquad angles and so the angles are \qquad .

If $\angle 4=3(2 m+1)^{\circ}$ and $\angle 13=4 m-(m-6)^{\circ}$.
a. Solve for m. \qquad
b. What is $\Varangle 4$? \qquad
c. What is $\Varangle 13$? \qquad
7. From the figure on the front of the page, if $\angle 4=\angle 5$, find and explain how you know.
a. $m \angle 1=$ \qquad \circ. \qquad
b. $m \angle 12=$ \qquad \circ. \qquad
c. $m \angle 13=\square$. \qquad
Extra Credit (Use image from the front page). If $\angle 14$ is a corresponding angle to $\angle 5$ and $\angle 6$ where $m \angle 14=[2(\mathrm{k}+40)]^{\circ}$ and $m \angle 5=(\mathrm{k}+45)^{\circ}$ and $m \angle 6=(2 \mathrm{k}+15)^{\circ}$.

Solve for k \qquad What's $\Varangle 14$? \qquad What's $\Varangle 5$? \qquad What's $\Varangle 6$? \qquad
For the following constructions, use a compass and a straight edge only. Show all necessary markings.
8. Construct a line segment congruent to the given line segm

10. Construct a line segment whose length is equal to the sum of the lengths of the given line segments.

9. Construct a line segment three times longer than the given segment.
11. Construct a line segment whose length is equal to the difference of the lengths of the given line segments.

