Per:_

Use the figure to the right below to answer the following questions. In this figure line l is parallel to line m and line o is perpendicular to line m. SYW. Each question is independent from the others.

Example: If $\angle 11$ and $\angle 13$ are <u>vertical</u> angles (**the relationship**), the angles are <u>(congruent</u>)

	(So we know that $\angle 11 \text{ must equal } \angle 13$). If $\angle a$. What does x equal? <u>-4</u> b. What is the measure of $\angle 11? \underline{39^{\circ}}$ c. What is the measure of $\angle 13? \underline{39^{\circ}}$	$\begin{array}{c} -11 = [-3(2x-5)]^{\circ} \text{ and } \leq 13 = \\ -3(2x-5) = -14x - 17 \\ -6x + 15 = -14x - 17 \\ 8x = -32 \\ x = -4 \end{array}$	$e^{(-14x-17)^{\circ}}$
1.	If $\angle 13$ and $\angle 14$ are a If $\angle 13 = (s - 2)^{\circ}$ and $\angle 14 = (3s + 2)^{\circ}$, a. What does s equal? b. What is $\angle 13$? c. What is $\angle 14$?	_ pair, together they = l m n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.	If $\angle 5$ and $\angle 4$ are ang If $\measuredangle 5 = (3b + 12)^\circ$ and $\measuredangle 4 = (2b - 22)^\circ$ a. What does b equal?	gles together they =	
3.	b. What is $\neq 4$? If $\angle 4$ and $\angle 11$ are If $\neq 4 = [2(4p - 3) - 8]^{\circ}$ and $\neq 11 = (4 + 2p)$ a. Solve for p	c. What is ∡5? _ interior angles and so the angles)°.	are
	b. What is ∡4?	c. What is ∡11?	
4.	If $\angle 13$ and $\angle 1$ are alternate If $\measuredangle 13 = (-1 + 2g)]^\circ$ and $\measuredangle 1 = (5g + 4g - 8g)$ a. Solve for g	angles and so they are 8)°	
	b. What is <i>≰</i> 13?	c. What is is 42	1?

5.	If $\angle 4$ and $\angle 12$ are	angles and so the angles are		
	If $\measuredangle 4 = (r - 4)^{\circ}$ and $\measuredangle 12 = (3r - 16)^{\circ}$.			
	a. Solve for r			
	b. What is $44?$	c. What is $412?$		
6.	If $\angle 4$ and $\angle 13$ are and	gles and so the angles are		
	If $\angle 4 = 3(2m+1)^{\circ}$ and $\angle 13 = 4m - (m-6)^{\circ}$.			
	a. Solve for m			
	b. What is ∡4?	c. What is ∡13?		
7.	From the figure on the front of the page, if $\angle 4 = \angle 5$, find and explain how you know.			
	a. $m \angle 1 = \underline{\qquad \circ}$.			
	b. $m \neq 12 = \underline{\qquad \circ}$.			
	c. $m \ge 15 = $			
Ex	Atra Credit (Use image from the front page). I $m \angle 14 = [2(k+40)]^{\circ}$ and $m \angle 5 = (k+45)^{\circ}$	If $\angle 14$ is a corresponding angle to $\angle 5$ and $\angle 6$ where and $m \angle 6 = (2k + 15)^{\circ}$.		
	Solve for k What's $414?$	What's \$\$? What's \$6?		
Fc 8.	r the following constructions, use a compass a Construct a line segment congruent to the give	and a straight edge only. Show all necessary markings. en 10. Construct a line segment whose length is equal to the sum of the lengths of the given line segments.		
		the sum of the lengths of the given line segments.		
	-			

9. Construct a line segment *three times* longer than the given segment.

11. Construct a line segment whose length is equal to the *difference* of the lengths of the given line segments.