\qquad Per: \qquad
SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

1. The line $y=2 x+5$ has \qquad solutions. This means that there are an infinite number of points for which the equation will still be true. Give two examples: \qquad) and (\qquad).
2. A system of equations is \qquad or more equations. Graphing will estimate how many the system has.
3. If the lines intersect, there is \qquad solution. There is only \qquad point where they intersect.
4. If the lines are \qquad , there are no solutions and their slopes will be the \qquad .
5. If the equations are for the same line, there are an \qquad number of solutions. The \qquad and y-intercepts are the same. These equations may not look the \qquad , but can be simplified to be the same.

For the following questions: 1) List the two SLOPES. 2) GRAPH the pairs of lines. 3) If they cross, CIRCLE where they intersect.
6. Line A: $y=-\frac{3}{2} x+4$
7. Line C: $y=2 x+3$
8. Line E: $y=\frac{1}{3} x-4$
Line B: $y=\frac{2}{3} x+1$
Line D: $y=2 x-5$
Line F: $y=-4 x+5$

Slope A: \qquad \& B: \qquad Slope C: \qquad \& D: \qquad Slope E: \qquad \& F: \qquad

CIRCLE whether the following equations are parallel, the same line, or have only one intersecting point. EXPLAIN how do you know (HDYK)
9. $y-\frac{1}{2} x=4$ $y=\frac{1}{2} x+2$
parallel, the same, intersecting HDYK \qquad
10. $y=2 x$

$$
y=-3(x-1)
$$

parallel, the same, intersecting HDYK \qquad
12. A system has at least two equations. One line passes through the points $(2,3)$ and $(0,5)$. Plot these points, graph the line, and label it line A. The other line passes through points $(1,1)$ and $(0,-1)$. Plot the points, graph the line, and label it line B. Circle the intersection point. The solution is: \qquad . How do you know? \qquad

Extra Credit: Write the equations of the lines of Line A: \qquad Line B: \qquad
11. $\frac{1}{3} x+y=2$

$$
y=3 x-4
$$

parallel, the same, intersecting HDYK \qquad
13. Gregory's Motorsports has ATVs (four wheels) and motorcycles (two wheels) in stock. The store has a total of 45 vehicles that have a total of 130 wheels. (These equations should look familiar.
a. Define your variables: A: \qquad M: \qquad
b. Make a table showing the number of vehicles.

- With 12 ATV's, how many motorcycles? \qquad
- With 8 ATV's, how many motorcycles? \qquad
c. Make table showing the number of wheels.
- With 12 ATV's, how many motorcycle wheels would

A	M
0	
	0

- With 8 ATV's, how many motorcycle wheels would there be? \qquad How many motorcycles? \qquad -
d. Write 2 equations (a system) that represents the situation.

Number of vehicles:
Number of vehicles:
\qquad . Solve the system by graphing the equations. Estimate the solution by finding the point of intersection. Solution: \qquad .
f. What does your solution mean? \qquad

g. Check by plugging your solution into both equations:

Solve each system by GRAPHING. CHECK your answers and SYW!
(No credit if answers not checked below.)
14. $y-3 x=-4$
$y=-\frac{1}{2} x+3$

Solution:
Check:
15. $\mathrm{y}=-\frac{1}{2} \mathrm{x}-2$
$y-2=-\frac{3}{2} x$

Solution:
Check:
16. $y=\frac{1}{3} x-3$ $y-x=1$

Solution: \qquad
Check:
17. $\left\{\begin{array}{l}y=-5 x+7 \\ 10 x+2 y=5\end{array}\right.$

Anna says the system of equations has no solutions. Is she right or wrong? \qquad Show your work and explain.

