\qquad Per: \qquad

1. Describe how you would graph an inequality that was in $y=m x+b$ form: \qquad
2. Describe how you would graph an inequality that was in $a x+b y=c$ form: \qquad
3. Explain when you use a dotted line or solid line when graphing inequalities on a coordinate plane. Dotted Line: \qquad Solid Line: \qquad
Graph the following inequalities. (Hint: solid or dotted?) Use a Test Point to determine where to shade.
4. $y \geq-3 x+2$

Solid OR Dotted Boundary Line?
TEST POINT (EX): $(0,0) .0 \geq 0+2$, NOT TRUE
Shade on the side of the line that DOES NOT include the point $(0,0)$ since it is NOT a solution.

Is $(4,-3)$ part of the solution set? \qquad
Show using your inequality:
5. $\mathrm{y} \leq \frac{3}{2} \mathrm{x}+1$

Solid OR Dotted Boundary Line?
TEST POINT: \qquad . True? \qquad
6. $2 x+3 y>12$
7. $5 x+3 y<15$

Is $(4,4)$ part of the solution set? \qquad
Show using your inequality:
x-intercept: (, 0)
y-intercept: (0 ,)
Dotted or Solid Boundary
Test Point:

x-intercept: \qquad
y-intercept:
Dotted or Solid Boundary
Test Point:

x-intercept: \qquad
y-intercept:
Dotted or Solid Boundary
Test Point: \qquad

9. What should you do if your test point falls on the boundary line? \qquad
10. The Yellow Cab Taxi charges $\$ 5.00$ flat rate in addition to $\$ 0.50$ per mile. Show your work in the following ways.
a. Table

\# of miles	Total cost
0	
10	
20	

b. Equation \qquad
c. Graph. Label your graph. (x -axis by 2 miles and y -axis by $\$ 2.00$)

d. On your graph above, show the possible solutions if the cab driver charges at least a $\$ \mathbf{5 . 0 0}$ flat fee.
11. Martha works in a shoe store and receives less than $\$ 25$ per day plus $\$ 5.00$ for each pair of shoes that she sells. Show your work in a table, inequality and graph.

\# of shoes	Total \$ earned
0	
5	
15	

Inequality: \qquad

12. VHMS is planning their next school play. They will charge $\$ 2$ per child ticket and $\$ 5$ per adult tickets.
a. What will be the number of each type of ticket sold to make exactly $\mathbf{\$ 2 0 0 0}$? Show your work the following ways:
b. Table

child	adult
0	
	0

c. Equation \qquad
d. Graph. (Label by 50).

e. Write an inequality if they make greater than $\$ 2000$. \qquad
f. Explain how your graph would change \qquad
g. Graph the change on the grid above.

Use the following inequality $\mathbf{1 4 - 2 x}<\mathbf{y}$ for the next few questions.
13. Describe at least 3 important details about the graph.
a.
b. \qquad
c.
14. Will the point $(2,7)$ be part of the solution set for this inequality? \qquad How do you know? \qquad
15. How does the zero/zero test help to graph this inequality? \qquad

